login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281440
E.g.f. C(x) satisfies: C(x) = cosh( Integral C(x)^7 dx ).
1
1, 1, 29, 2605, 478745, 148838425, 70130095925, 46612385237125, 41546401457128625, 47826888286436568625, 69072143074283849778125, 122288686408468623492188125, 260460302659740930298833415625, 657013212464002677825677944215625, 1937092871632377472727255256840753125, 6600357306119497177404312427298619203125, 25738551995192677896309032835665731654390625
OFFSET
0,3
FORMULA
C(x)^2 - S(x)^2 = 1 and C(x) = 1 + Integral C(x)^7*S(x) dx, where S(x) is described by A281439.
MATHEMATICA
a[n_] := Module[{S = x, C = 1, C8, SC7}, For[i = 0, i <= n, i++, C8 = C^8 + x*O[x]^(2n) // Normal; S = Integrate[C8, x]; SC7 = S*C^7 + O[x]^(2n) // Normal; C = 1+Integrate[SC7, x]]; (2n)!*Coefficient[C, x, 2n]]; Array[a, 17, 0] (* Jean-François Alcover, Mar 01 2017, translated from Pari *)
PROG
(PARI) {a(n) = my(S=x, C=1); for(i=0, n, S = intformal( C^8 +x*O(x^(2*n))); C = 1 + intformal( S*C^7 ) ); (2*n)!*polcoeff(C, 2*n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A370339 A316333 A377218 * A171720 A305138 A091751
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2017
STATUS
approved