login
A377218
Expansion of the o.g.f. A(x) defined by [x^n] A(x)^(24*n) = (4*n)!/n!^4 for n >= 0.
2
1, 1, 29, 2246, 239500, 30318701, 4271201506, 647359627557, 103476937050223, 17223017775652625, 2959285397777331751, 521687007046376376544, 93932798602803741121051, 17215649571517858590782737, 3203146941738318544432065500, 603763082812549420389330837978, 115095760617137117019641563685386
OFFSET
0,3
COMMENTS
Compare with A000984(n) = [x^n] (1 + x)^(2*n) = (2*n)!/n!^2.
The central binomial coefficients A000984(n) satisfy the supercongruences u(n*p^k) == u(n*p^(k-1)) (mod p^(3*k)) for all primes p >= 5 and positive integers n and k.
More generally, for positive integers r and s, the sequence {u(r,s; n) : n >= 0} defined by u(r,s; n) = [x^(s*n)] (1 + x)^(r*n) = binomial(r*n, s*n) satisfies the same supercongruences (Meštrović, Section 6, equation 39).
Conjecture: for positive integers r and s, the sequence {v(r,s; n) : n >= 0} defined by v(r,s; n) = [x^(s*n)] A(x)^(r*n) also satisfies the same supercongruences.
FORMULA
O.g.f.: A(x) = ( x/(x * series_reversion(E(x)))^(1/24), where E(x) = exp(Sum_{n >= 1} (4*n)!/n!^4 *x^n/n) is the o.g.f. of A333042.
MAPLE
Order := 25:
E(x) := exp(add((4*n)!/n!^4 * x^n/n, n = 1..25)):
solve(series(x*E(x), x) = y, x):
convert(%, polynom):
g := taylor(y/%, y = 0, 25):
seq(coeftayl(g^(1/24), y = 0, n), n = 0..20);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 20 2024
STATUS
approved