login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333042
G.f.: exp(Sum_{k>=1} (4*k)!/k!^4 * x^k/k).
4
1, 24, 1548, 155744, 19893054, 2937661200, 477691374152, 83161733788992, 15230338934722749, 2900395347525785464, 569718535329796732476, 114759815105897160007392, 23602808330272138320592494, 4940203531008336735249385488, 1049571237547858314991495867848
OFFSET
0,2
COMMENTS
From Peter Bala, Feb 08 2023: (Start)
Let A(x) denote the o.g.f. of the sequence. The sequence defined by b(n) := [x^n] A(x)^n for n >= 1 begins [24, 3672, 703968, 149835864, 33911355024, 7993981771488, 1940145241321920, ...]. We conjecture that b(n) satisfies the supercongruences b(n*p^r) == b(n*p^(r-1)) ( mod p^(3*r) ) for prime p >= 5 and all positive integers n and r.
More generally, for a positive integer m, set A_m(x) = exp( Sum_{n >= 1} (m*n)!/(n!^m) * x^n/n ) and define a sequence {b_m(n): n >= 1} by b_m(n) := [x^n] A_m(x)^n. Then we conjecture that b_m(n) is an integer sequence satisfying the same supercongruences. (End)
FORMULA
a(n) ~ c * 4^(4*n)/n^(5/2), where c = exp(3*HypergeometricPFQ[{1, 1, 5/4, 3/2, 7/4}, {2, 2, 2, 2}, 1] / 32) / (sqrt(2)*Pi^(3/2)) = 0.14496966... - Vaclav Kotesovec, Mar 06 2020, updated Feb 16 2024
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A008977(k) * a(n-k). - Seiichi Manyama, Feb 09 2024
MATHEMATICA
CoefficientList[Series[Exp[Sum[(4*k)!/k!^4*x^k/k, {k, 1, 20}]], {x, 0, 20}], x]
CoefficientList[Series[Exp[24*x*HypergeometricPFQ[{1, 1, 5/4, 3/2, 7/4}, {2, 2, 2, 2}, 256*x]], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Mar 06 2020
STATUS
approved