login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333039
Composites m such that sigma(m) < sigma(m-1).
3
9, 21, 25, 27, 33, 35, 39, 45, 46, 49, 51, 55, 57, 65, 69, 77, 81, 85, 87, 91, 93, 95, 99, 105, 106, 111, 115, 117, 118, 119, 121, 123, 125, 129, 133, 141, 143, 145, 153, 155, 159, 161, 165, 166, 169, 171, 175, 177, 183, 185, 187, 189, 201
OFFSET
1,1
COMMENTS
As all primes p >= 5 satisfy sigma(p) < sigma(p-1) [see A333038], this sequence is reserved for composite numbers.
This sequence is infinite because all squares of primes p, p >= 3 are terms.
Composites such that sigma(m) = sigma(m-1) are in A231546.
REFERENCES
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 620 pp. 82, 280, Ellipses Paris 2004
LINKS
EXAMPLE
sigma(77) = 1+7+11+77 = 96 < sigma(76) = 1+2+4+19+38+76 = 140, hence composite 77 is a term.
sigma(135) = 1+3+5+9+15+27+45+135 = 240 > sigma(134) = 1+2+67+134 = 204, hence composite 135 is not a term.
MAPLE
filter:= m -> not isprime(m) and numtheory:-sigma(m) < numtheory:-sigma(m-1) : select(filter, [$1..500]);
MATHEMATICA
Select[Range[200], CompositeQ[#] && DivisorSigma[1, #] < DivisorSigma[1, # - 1] &] (* Amiram Eldar, Mar 12 2020 *)
PROG
(PARI) isok(m) = (m>1) && !isprime(m) && (sigma(m) < sigma(m-1)); \\ Michel Marcus, Mar 15 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, Mar 12 2020
STATUS
approved