login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333041
Odd numbers m such that sigma(m) > sigma(m-1).
0
3, 63, 75, 135, 147, 195, 255, 315, 399, 405, 459, 483, 495, 525, 555, 567, 615, 627, 663, 675, 693, 735, 759, 765, 795, 819, 855, 915, 945, 975, 999, 1035, 1095, 1125, 1155, 1215, 1239, 1287, 1323, 1395, 1455, 1515, 1539, 1575, 1647, 1659, 1683, 1755, 1785, 1815, 1827, 1845, 1875
OFFSET
1,1
COMMENTS
The odd terms of A333038 [sigma(m) <= sigma(m-1)] represent about 95% of the data, so the odd integers that do not satisfy this relation are proposed here.
Except for 3, there are no prime powers in this sequence.
It appears that most of the terms are divisible by 3; the two smallest exceptions are 13475 and 17255 (see A323726).
Odd (and even) numbers such that sigma(m) = sigma(m-1) are in A231546.
EXAMPLE
sigma(63) = 1+3+7+9+21+63 = 104 > sigma(62) = 1+2+31+62=96 and 63 is in the sequence.
sigma(77) = 1+7+11+77 = 96 < sigma(76) = 1+2+4+19+38+76 = 140 and 77 is not a term.
MATHEMATICA
Select[2 * Range[1000] + 1, DivisorSigma[1, #] > DivisorSigma[1, # - 1] &] (* Amiram Eldar, Apr 14 2020 *)
PROG
(PARI) is(n)=n%2 && sigma(n)>sigma(n-1) \\ Charles R Greathouse IV, Apr 14 2020
CROSSREFS
A323726 is a subsequence.
Apart from the first term, a subsequence of A334117.
Sequence in context: A144422 A327053 A135444 * A323726 A087886 A123754
KEYWORD
nonn
AUTHOR
Bernard Schott, Apr 14 2020
STATUS
approved