The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333043 G.f.: exp(Sum_{k>=1} (5*k)!/k!^5 * x^k/k). 3
1, 120, 63900, 63148000, 85136103750, 137629764435024, 250331826090382280, 494436455370401985600, 1037731227148399567352625, 2281874234819846601146115000, 5205960892339635531670022801628, 12237148815599682784939438806708960, 29483782935554473122496294160376815950 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
In general, if r>=2, m>0 and g.f. = exp(m * Sum_{k>=1} (r*k)!/k!^r * x^k/k), then a(n) ~ c(r,m) * m * r^(r*n + 1/2) / ((2*Pi)^((r-1)/2) * n^((r+1)/2)) , where c(r,m) = exp((m * r! / r^r) * HypergeometricPFQ[{1, 1, (r+1)/r, (r+2)/r, ... , (2*r-1)/r}, {2, 2, ...r-times... 2, 2}, 1]). - Vaclav Kotesovec, Feb 16 2024
LINKS
FORMULA
a(n) ~ c * 5^(5*n)/n^3, where c = sqrt(5) * exp(24*HypergeometricPFQ[{1, 1, 6/5, 7/5, 8/5, 9/5}, {2, 2, 2, 2, 2}, 1] / 625) / (4*Pi^2) = 0.05943406... - Vaclav Kotesovec, Mar 06 2020, updated Feb 16 2024
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A008978(k) * a(n-k). - Seiichi Manyama, Feb 09 2024
MATHEMATICA
CoefficientList[Series[Exp[Sum[(5*k)!/k!^5*x^k/k, {k, 1, 20}]], {x, 0, 20}], x]
CoefficientList[Series[Exp[120*x*HypergeometricPFQ[{1, 1, 6/5, 7/5, 8/5, 9/5}, {2, 2, 2, 2, 2}, 3125*x]], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2024 *)
CROSSREFS
Sequence in context: A074653 A065961 A364512 * A058528 A001421 A107446
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 06 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 07:02 EDT 2024. Contains 372729 sequences. (Running on oeis4.)