The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001421 a(n) = (6*n)!/((n!)^3*(3*n)!). 11
1, 120, 83160, 81681600, 93699005400, 117386113965120, 155667030019300800, 214804163196079142400, 305240072216678400087000, 443655767845074392936328000, 656486312795713480715743268160, 985646873056680684690542988249600, 1497786250388951255453847206769124800 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Self-convolution of A092870, where A092870(n) = (12^n/n!^2) * Product_{k=0..n-1} (12k+1)*(12k+5). - Paul D. Hanna, Jan 25 2011
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..310 (terms 0..75 from Vincenzo Librandi)
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998 (See Eq. 31.)
R. S. Maier, Nonlinear differential equations satisfied by certain classical modular forms, arXiv:0807.1081 [math.NT], 2008_2010, p. 34 equation (7.29b).
FORMULA
O.g.f.: Hypergeometric2F1(5/12, 1/12; 1; 1728x)^2. - Jacob Lewis (jacobml(AT)uw.edu), Jul 28 2009
a(n) = binomial(2n,n) * (12^n/n!^2) * Product_{k=0..n-1} (6k+1)*(6k+5). - Paul D. Hanna, Jan 25 2011
G.f.: F(1/6, 1/2, 5/6; 1, 1; 1728*x), a hypergeometric series. - Michael Somos, Feb 28 2011
0 = y^3*z^3 - 360*y^4*z^2 + 43200*y^5*z - 1728000*y^6 - 16632*x*y^2*z^3 + 7691328*x*y^3*z^2 - 1738520064*x*y^4*z + 176027074560*x*y^5 + 92207808*x^2*y*z^3 - 69176553984*x^2*y^2*z^2 + 23624298528768*x^2*y^3*z - 2853152143441920*x^2*y^4 - 170400029184*x^3*z^3 + 224945232150528*x^3*y*z^2 - 92759146352345088*x^3*y^2*z + 11686511179538104320*x^3*y^3 where x = a(n), y = a(n+1), z = a(n+2) for all n in z. - Michael Somos, Sep 21 2014
a(n) ~ 2^(6*n - 1) * 3^(3*n) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 07 2018
From Peter Bala, Feb 14 2020: (Start)
a(n) = binomial(6*n,n)*binomial(5*n,n)*binomial(4*n,n) = ( [x^n](1 + x)^(6*n) ) * ( [x^n](1 + x)^(5*n) ) * ( [x^n](1 + x)^(4*n) ) = [x^n](F(x)^(120*n)), where F(x) = 1 + x + 227*x^2 + 123980*x^3 + 92940839*x^4 + 82527556542*x^5 + 81459995686401*x^6 + ...
appears to have integer coefficients. For similar results see A008979.
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z)^n] (1 + x + y + z)^(6*n). (End)
a(n) = (8^n/n!^3)*Product_{k = 0..3*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
a(n) = 24*(6*n - 1)*(2*n - 1)*(6*n - 5)*a(n-1)/n^3. - Neven Sajko, Jul 19 2023
EXAMPLE
G.f.: A(x) = 1 + 120*x + 83160*x^2 + 81681600*x^3 + ...
A(x)^(1/2) = 1 + 60*x + 39780*x^2 + 38454000*x^3 + ... + A092870(n)*x^n + ...
MAPLE
f := n->(6*n)!/( (n!)^3*(3*n)!);
MATHEMATICA
Factorial[6 n]/(Factorial[3n] Factorial[n]^3) (* Jacob Lewis (jacobml(AT)uw.edu), Jul 28 2009 *)
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/6, 1/2, 5/6}, {1, 1}, 1728 x], {x, 0, n}] (* Michael Somos, Jul 11 2011 *)
PROG
(PARI) {a(n)=(2*n)!/n!^2*(12^n/n!^2)*prod(k=0, n-1, (6*k+1)*(6*k+5))} \\ Paul D. Hanna, Jan 25 2011
(Magma) [Factorial(6*n)/(Factorial(n)^3*Factorial(3*n)): n in [0..15]]; // Vincenzo Librandi, Oct 26 2011
CROSSREFS
Cf. A092870; variants: A184423, A008977, A184892, A184896, A184898. - Paul D. Hanna, Jan 25 2011
Cf. A289292.
Sequence in context: A364512 A333043 A058528 * A107446 A184887 A279579
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Glenn K Painter (KUPK78A(AT)prodigy.com)
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 21:38 EDT 2024. Contains 372758 sequences. (Running on oeis4.)