login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184423 a(n) = (2*n)!*(3*n)!/n!^5. 5
1, 12, 540, 33600, 2425500, 190702512, 15849497664, 1369618398720, 121821136479900, 11079206239530000, 1025579963180813040, 96310511463483233280, 9152842704012278107200, 878622906816654279840000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Denoted by h_3[n] by T. Piezas III. He also gives formulas for 1/Pi such as 1/Pi = 2 * Sum_{n>=0} a(n) * (-1)^n * (51*n + 7) / (12^3)^(n + 1/2). - Michael Somos, May 31 2012

LINKS

Table of n, a(n) for n=0..13.

T. Piezas III, 0013: Article 3 (Pi Formulas and the Monster Group).

FORMULA

Self-convolution of A184424:

a(n) = Sum_{k=0..n} A184424(k)*A184424(n-k) where A184424(n) = (3^n/n!^2)*Product_{k=1..n} (6*k-4)*(6*k-5).

a(n) = 6 * (2*n - 1) * (3*n - 1) * (3*n - 2) / n^3 * a(n-1) if n>0. - Michael Somos, May 31 2012

EXAMPLE

G.f.: A(x) = 1 + 12*x + 540*x^2 + 33600*x^3 + 2425500*x^4 +...

G.f. of A184424 equals A(x)^(1/2):

A(x)^(1/2) = 1 + 6*x + 252*x^2 + 15288*x^3 + 1089270*x^4 + 84963060*x^5 +...+ [(3^n/n!^2)*Product_{k=1..n} (6*k-4)*(6*k-5)]*x^n +...

PROG

(PARI) {a(n)=(3*n)!*(2*n)!/n!^5}

(PARI) {a(n)=polcoeff(sum(m=0, n, 3^m*prod(k=1, m, (6*k-4)*(6*k-5))/m!^2*x^m+x*O(x^n))^2, n)}

CROSSREFS

Cf. A184424.

Sequence in context: A004801 A202079 A067733 * A064344 A163046 A193381

Adjacent sequences:  A184420 A184421 A184422 * A184424 A184425 A184426

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 02:15 EDT 2015. Contains 261184 sequences.