The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184424 a(n) = (3^n/n!^2) * Product_{k=1..n} (6k-4)*(6k-5). 6
 1, 6, 252, 15288, 1089270, 84963060, 7023612960, 604604070720, 53620823521980, 4865593245513000, 449580815885401200, 42156561463105471200, 4001360292206427641400, 383704407665664889683600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..492 FORMULA Self-convolution equals A184423, where A184423(n) = (2n)!*(3n)!/n!^5: Sum_{k=0..n} a(n-k)*a(k) = (2n)!*(3n)!/n!^5. a(n) ~ 2^(2*n + 1/3) * 3^(3*n - 1/2) * sqrt(Pi) / (Gamma(1/3)^3 * n^(3/2)). - Vaclav Kotesovec, Jun 09 2019 EXAMPLE G.f.: A(x) = 1 + 6*x + 252*x^2 + 15288*x^3 + 1089270*x^4 +... G.f. of A184423 equals A(x)^2: A(x)^2 = 1 + 12*x + 540*x^2 + 33600*x^3 + 2425500*x^4 + 190702512*x^5 +...+ [(2n)!*(3n)!/n!^5]*x^n +... MATHEMATICA a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/6, 1/3, 1, 108 x], {x, 0, n}]; (* Michael Somos, Sep 26 2011 *) Table[3^n/(n!)^2 Product[(6k-4)(6k-5), {k, n}], {n, 0, 20}] (* Harvey P. Dale, May 10 2019 *) PROG (PARI) {a(n)=3^n*prod(k=1, n, (6*k-4)*(6*k-5))/n!^2} (PARI) {a(n)=polcoeff(sum(m=0, n, (2*m)!*(3*m)!/m!^5*x^m+x*O(x^n))^(1/2), n)} CROSSREFS Cf. A184423. Sequence in context: A335158 A221822 A361186 * A324478 A230881 A332563 Adjacent sequences: A184421 A184422 A184423 * A184425 A184426 A184427 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 11:51 EDT 2024. Contains 373407 sequences. (Running on oeis4.)