
REFERENCES

R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 217; 3 (1968), 23.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=0..9.
A. de Vries, Formal Languages: An Introduction
Andreas Distler, Classification and Enumeration of Finite Semigroups, A Thesis Submitted for the Degree of PhD, University of St Andrews (2010).
Andreas Distler and Tom Kelsey, The Monoids of Order Eight and Nine, in Intelligent Computer Mathematics, Lecture Notes in Computer Science, Volume 5144/2008, SpringerVerlag. [From N. J. A. Sloane, Jul 10 2009]
A. Distler and T. Kelsey, The semigroups of order 9 and their automorphism groups, arXiv preprint arXiv:1301.6023 [math.CO], 2013.
G. E. Forsythe, SWAC computes 126 distinct semigroups of order 4, Proc. Amer. Math. Soc. 6, (1955). 443447.
H. Juergensen and P. Wick, Die Halbgruppen von Ordnungen <= 7, Semigroup Forum, 14 (1977), 6979.
H. Juergensen and P. Wick, Die Halbgruppen von Ordnungen <= 7, annotated and scanned copy.
Daniel J. Kleitman, Bruce L. Rothschild and Joel H. Spencer, The number of semigroups of order n, Proc. Amer. Math. Soc., 55 (1976), 227232.
R. J. Plemmons, There are 15973 semigroups of order 6 (annotated and scanned copy)
Eric Postpischil Associativity Problem, Posting to sci.math newsgroup, May 21 1990.
S. Satoh, K. Yama, and M. Tokizawa, Semigroups of order 8, Semigroup Forum 49 (1994), 729.
N. J. A. Sloane, Overview of A001329, A001423A001428, A258719, A258720.
T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. (Annotated and scanned copy)
Eric Weisstein's World of Mathematics, Semigroup.
Index entries for sequences related to semigroups
