login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001423 Number of semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).
(Formerly M3550 N1438)
25
1, 1, 4, 18, 126, 1160, 15973, 836021, 1843120128, 52989400714478 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..9.

A. de Vries, Formal Languages: An Introduction

Andreas Distler, Classification and Enumeration of Finite Semigroups, A Thesis Submitted for the Degree of PhD, University of St Andrews (2010).

Andreas Distler and Tom Kelsey, The Monoids of Order Eight and Nine, in Intelligent Computer Mathematics, Lecture Notes in Computer Science, Volume 5144/2008, Springer-Verlag. [From N. J. A. Sloane, Jul 10 2009]

A. Distler and T. Kelsey, The semigroups of order 9 and their automorphism groups, arXiv preprint arXiv:1301.6023 [math.CO], 2013.

G. E. Forsythe, SWAC computes 126 distinct semigroups of order 4, Proc. Amer. Math. Soc. 6, (1955). 443-447.

H. Juergensen and P. Wick, Die Halbgruppen von Ordnungen <= 7, Semigroup Forum, 14 (1977), 69-79.

H. Juergensen and P. Wick, Die Halbgruppen von Ordnungen <= 7, annotated and scanned copy.

Daniel J. Kleitman, Bruce L. Rothschild and Joel H. Spencer, The number of semigroups of order n, Proc. Amer. Math. Soc., 55 (1976), 227-232.

R. J. Plemmons, There are 15973 semigroups of order 6 (annotated and scanned copy)

Eric Postpischil Associativity Problem, Posting to sci.math newsgroup, May 21 1990.

S. Satoh, K. Yama, and M. Tokizawa, Semigroups of order 8, Semigroup Forum 49 (1994), 7-29.

N. J. A. Sloane, Overview of A001329, A001423-A001428, A258719, A258720.

T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. (Annotated and scanned copy)

Eric Weisstein's World of Mathematics, Semigroup.

Index entries for sequences related to semigroups

FORMULA

a(n) = (A027851(n) + A029851(n))/2.

CROSSREFS

Cf. A001426, A023814, A058107, A058123, A151823.

Sequence in context: A215691 A073511 A108704 * A158341 A144272 A034517

Adjacent sequences:  A001420 A001421 A001422 * A001424 A001425 A001426

KEYWORD

nonn,hard,more,nice,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

a(9) added by Andreas Distler, Jan 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 19:19 EST 2016. Contains 278770 sequences.