login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001425
Number of commutative groupoids with n elements.
(Formerly M3714 N1518)
16
1, 1, 4, 129, 43968, 254429900, 30468670170912, 91267244789189735259, 8048575431238519331999571800, 24051927835861852500932966021650993560, 2755731922430783367615449408031031255131879354330
OFFSET
0,3
REFERENCES
Satoh, S.; Yama, K.; and Tokizawa, M., Semigroups of order 8, Semigroup Forum 49 (1994), 7-29. [Background]
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
LINKS
T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. (Annotated and scanned copy)
FORMULA
a(n) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (sum {d|i} (d*s_d))^((i*s_i^2+s_i)/2) or {i=j, even} (sum {d|i} (d*s_d))^(i*s_i^2/2) * (sum {d|i/2} (d*s_d))^s_i or {i != j} (sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)
a(n) asymptotic to (n^binomial(n+1, 2))/n! = A023813(n)/A000142(n) ~ e^n*n^binomial(n, 2) / sqrt(2*pi*n).
CROSSREFS
a(n)+A079183(n)=A001329(n)
Sequence in context: A298274 A299136 A117897 * A050284 A096759 A299367
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Christian G. Bower Feb 15 1998 and May 15 1998. Formula Dec 03 2003.
STATUS
approved