login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117897
Number of labeled trees on prime numbers of nodes through n-th prime.
1
1, 4, 129, 16936, 2357964627, 1794518358664, 2862424846028174457, 5483249282630830360396, 39471589603944768518079950019, 3053134546009996125349281528007992109928
OFFSET
1,2
COMMENTS
A000178 = Sum_{k=1..n} k^(k-1). A001923 = Sum_{k=1..n} k^k. A061789 = Sum_{k=1..n} prime(k)^prime(k), prime(k) = k-th prime.
First differences a(n+1) - a(n) for n=1,...,9 are A076931(j) at j=3, 5, 7, 11, 13, 17, 19, 23 and 29. - R. J. Mathar, May 01 2007
LINKS
FORMULA
a(n) = Sum_{k=1..n} prime(k)^(prime(k)-2).
a(n) = Sum_{k=1..n} A000272(A000040(k)).
EXAMPLE
a(1) = number of labeled trees on prime(1) numbers of nodes = number of labeled trees on 2 nodes = A000272(2) = 2^0 = 1.
a(2) = number of labeled trees on prime(1) or prime(2) numbers of nodes = number of labeled trees on 2 or 3 nodes = A000272(2)+A000272(3) = 2^0 + 3^1 = 4.
a(3) = number of labeled trees on prime(1) or prime(2) or prime(3) numbers of nodes = number of labeled trees on 2 or 3 or 5 nodes = A000272(2)+A000272(3)+A000272(5) = 2^0 + 3^1 + 5^3 = 129.
MATHEMATICA
Table[Sum[Prime[k]^(Prime[k] -2), {k, n}], {n, 20}] (* G. C. Greubel, Sep 27 2021 *)
PROG
(Sage) [sum( nth_prime(k)^(nth_prime(k) -2) for k in (1..n)) for n in (1..20)] # G. C. Greubel, Sep 27 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 03 2006
STATUS
approved