login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117898
Number triangle 2^abs(L(C(n,2)/3) - L(C(k,2)/3))*[k<=n] where L(j/p) is the Legendre symbol of j and p.
5
1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1
OFFSET
0,4
COMMENTS
Row sums are A117899. Diagonal sums are A117900. Inverse is A117901. A117898 mod 2 is A117904.
FORMULA
G.f.: (1 +x*(1+y) +x^2*(2+2*y+y^2) +x^3*y(1+2*y) +2*x^4*y^2)/((1-x^3)*(1-x^3*y^3)).
T(n, k) = [k<=n]*2^abs(L(C(n,2)/3) - L(C(k,2)/3)).
EXAMPLE
Triangle begins
1;
1, 1;
2, 2, 1;
1, 1, 2, 1;
1, 1, 2, 1, 1;
2, 2, 1, 2, 2, 1;
1, 1, 2, 1, 1, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1;
2, 2, 1, 2, 2, 1, 2, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1;
2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
MATHEMATICA
Flatten[CoefficientList[CoefficientList[Series[(1 +x(1+y) +x^2(2+2y+y^2) +x^3*y(1 +2y) +2x^4*y^2)/((1-x^3)(1-x^3*y^3)), {x, 0, 15}, {y, 0, 15}], x], y]] (* G. C. Greubel, May 03 2017 *)
T[n_, k_]:= 2^Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 27 2021 *)
PROG
(Sage)
def T(n, k): return 2^abs(kronecker(binomial(n, 2), 3) - kronecker(binomial(k, 2), 3))
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 27 2021
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 01 2006
STATUS
approved