Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 01 2021 13:10:42
%S 1,1,1,2,2,1,1,1,2,1,1,1,2,1,1,2,2,1,2,2,1,1,1,2,1,1,2,1,1,1,2,1,1,2,
%T 1,1,2,2,1,2,2,1,2,2,1,1,1,2,1,1,2,1,1,2,1,1,1,2,1,1,2,1,1,2,1,1,2,2,
%U 1,2,2,1,2,2,1,2,2,1,1,1,2,1,1,2,1,1,2,1,1,2,1
%N Number triangle 2^abs(L(C(n,2)/3) - L(C(k,2)/3))*[k<=n] where L(j/p) is the Legendre symbol of j and p.
%C Row sums are A117899. Diagonal sums are A117900. Inverse is A117901. A117898 mod 2 is A117904.
%H G. C. Greubel, <a href="/A117898/b117898.txt">Table of n, a(n) for the first 101 rows, flattened</a>
%F G.f.: (1 +x*(1+y) +x^2*(2+2*y+y^2) +x^3*y(1+2*y) +2*x^4*y^2)/((1-x^3)*(1-x^3*y^3)).
%F T(n, k) = [k<=n]*2^abs(L(C(n,2)/3) - L(C(k,2)/3)).
%e Triangle begins
%e 1;
%e 1, 1;
%e 2, 2, 1;
%e 1, 1, 2, 1;
%e 1, 1, 2, 1, 1;
%e 2, 2, 1, 2, 2, 1;
%e 1, 1, 2, 1, 1, 2, 1;
%e 1, 1, 2, 1, 1, 2, 1, 1;
%e 2, 2, 1, 2, 2, 1, 2, 2, 1;
%e 1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
%e 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1;
%e 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1;
%e 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
%t Flatten[CoefficientList[CoefficientList[Series[(1 +x(1+y) +x^2(2+2y+y^2) +x^3*y(1 +2y) +2x^4*y^2)/((1-x^3)(1-x^3*y^3)), {x,0,15}, {y,0,15}], x], y]] (* _G. C. Greubel_, May 03 2017 *)
%t T[n_, k_]:= 2^Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 27 2021 *)
%o (Sage)
%o def T(n, k): return 2^abs(kronecker(binomial(n,2), 3) - kronecker(binomial(k,2), 3))
%o flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Sep 27 2021
%Y Cf. A117898, A117899, A117900, A117901, A117904.
%K easy,nonn,tabl
%O 0,4
%A _Paul Barry_, Apr 01 2006