|
|
A243840
|
|
Pair deficit of the most equal in size partition of n into two parts using floor rounding of the expectations for n, floor(n/2) and n- floor(n/2), assuming equal likelihood of states defined by the number of two-cycles.
|
|
1
|
|
|
0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 2, 2, 1, 2, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,12
|
|
LINKS
|
Table of n, a(n) for n=0..79.
|
|
FORMULA
|
a(n) = floor(a162970(n)/a000085(n)) - floor(a162970(floor(n/2))/a000085(floor(n/2))) - floor(a162970(n-floor(n/2))/a000085(n-floor(n/2))).
|
|
EXAMPLE
|
Trivially, for n =0,1 no pairs are possible so a(0) and a(1) are 0. For n = 2, the expectation, E(n), equals 0.5. So a(2) = Floor(E(2))-Floor(E(1))-Floor(E(1)) = 0. For n=5 = 2 + 3, E(5) = 20/13, E(2) = 0.5 and E(3) = 0.75 and a(5) = Floor(E(5))-Floor(E(2))-Floor(E(3)) = 1.
Interestingly, for n = 8, E(8) = 532/191 and E(4) = 6/5, so a(n) = 2 - 1 -1 = 0.
|
|
CROSSREFS
|
A162970 provides the numerator for calculating the expected value.
A000085 provides the denominator for calculating the expected value.
Sequence in context: A113193 A239110 A278514 * A117898 A212810 A072344
Adjacent sequences: A243837 A243838 A243839 * A243841 A243842 A243843
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Rajan Murthy, Jun 12 2014
|
|
STATUS
|
approved
|
|
|
|