The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243840 Pair deficit of the most equal in size partition of n into two parts using floor rounding of the expectations for n, floor(n/2) and n- floor(n/2), assuming equal likelihood of states defined by the number of two-cycles. 1
 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 2, 2, 1, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 LINKS FORMULA a(n) = floor(a162970(n)/a000085(n)) - floor(a162970(floor(n/2))/a000085(floor(n/2))) - floor(a162970(n-floor(n/2))/a000085(n-floor(n/2))). EXAMPLE Trivially, for n =0,1 no pairs are possible so a(0) and a(1) are 0. For n = 2, the expectation, E(n), equals 0.5.  So a(2) = Floor(E(2))-Floor(E(1))-Floor(E(1)) = 0.  For n=5 = 2 + 3, E(5) = 20/13, E(2) = 0.5 and E(3) = 0.75 and a(5) = Floor(E(5))-Floor(E(2))-Floor(E(3)) = 1. Interestingly, for n = 8, E(8) = 532/191 and E(4) = 6/5, so a(n) = 2 - 1 -1  = 0. CROSSREFS A162970 provides the numerator for calculating the expected value. A000085 provides the denominator for calculating the expected value. Sequence in context: A113193 A239110 A278514 * A117898 A212810 A072344 Adjacent sequences:  A243837 A243838 A243839 * A243841 A243842 A243843 KEYWORD nonn AUTHOR Rajan Murthy, Jun 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 27 19:20 EDT 2022. Contains 354898 sequences. (Running on oeis4.)