login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243838
Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUDDUUUUDUDDDDUDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/9)), read by rows.
2
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 1, 58783, 3, 208002, 10, 742865, 35, 2674314, 126, 9694383, 462, 35355954, 1716, 129638355, 6435, 477614390, 24310, 1767170813, 92376, 1, 6563767708, 352708, 4, 24464914958, 1352046, 16, 91477363405, 5200170, 65
OFFSET
0,3
COMMENTS
UDUUDDUUUUDUDDDDUDUD is a Dyck path that contains all sixteen consecutive step patterns of length 4.
LINKS
EXAMPLE
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 2;
: 3 : 5;
: 4 : 14;
: 5 : 42;
: 6 : 132;
: 7 : 429;
: 8 : 1430;
: 9 : 4862;
: 10 : 16795, 1;
: 11 : 58783, 3;
: 12 : 208002, 10;
: 13 : 742865, 35;
: 14 : 2674314, 126;
: 15 : 9694383, 462;
: 16 : 35355954, 1716;
: 17 : 129638355, 6435;
: 18 : 477614390, 24310;
: 19 : 1767170813, 92376, 1;
: 20 : 6563767708, 352708, 4;
: 21 : 24464914958, 1352046, 16;
MAPLE
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 5, 2, 4,
8, 9, 10, 11, 2, 13, 5, 4, 2, 2, 18, 2, 20, 5][t])
+`if`(t=20, z, 1) *b(x-1, y-1, [1, 3, 1, 3, 6, 7,
1, 3, 3, 3, 12, 1, 14, 15, 16, 17, 1, 19, 1, 3][t]))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
seq(T(n), n=0..30);
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Expand[If[y >= x - 1, 0, b[x - 1, y + 1, {2, 2, 4, 5, 2, 4, 8, 9, 10, 11, 2, 13, 5, 4, 2, 2, 18, 2, 20, 5}[[t]]]] + If[t == 20, z, 1]*If[y == 0, 0, b[x - 1, y - 1, {1, 3, 1, 3, 6, 7, 1, 3, 3, 3, 12, 1, 14, 15, 16, 17, 1, 19, 1, 3}[[t]]]]]];
T[n_] := CoefficientList[b[2n, 0, 1], z];
T /@ Range[0, 30] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)
CROSSREFS
Row sums give A000108.
T(736522,k) = A243752(736522,k).
T(n,0) = A243753(n,736522).
Cf. A243820.
Sequence in context: A261591 A291823 A287972 * A242450 A211216 A261592
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jun 11 2014
STATUS
approved