The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243841 Pair deficit of the most equal partition of n into two parts using ceiling rounding of the expectations of n, floor(n/2) and n-floor(n/2), assuming equal likelihood of states defined by the number of 2-cycles. 1
 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,41 COMMENTS A162970 and A000085 provide the numerator and the denominator for calculating the expected value. LINKS FORMULA a(n) = ceiling(a162970(n)/a000085(n)) - (ceiling(a162970(floor(n/2))/a000085(floor(n/2))) + ceiling(a162970(n-floor(n/2))/a000085(n-floor(n/2)))) EXAMPLE Trivially, for n =0,1 no pairs are possible so a(0) and a(1) are 0. For n = 2, the expectation, E(n), equals 0.5.  So a(2) = Ceiling(E(2))-(Ceiling(E(1))+Ceiling(E(1))) = 1.  For n=5 = 2 + 3, E(5) = 20/13, E(2) = 0.5 and E(3) = 0.75 and a(5) = Ceiling(E(5))- (Ceiling(E(2))+ Ceiling(E(3))) = 0 Interestingly, for n = 8, E(8) = 532/191 and E(4) = 6/5, so a(n) = 3 - (2 + 2)  = -1. CROSSREFS Cf. A000085, A162970. Sequence in context: A016366 A016427 A326170 * A131038 A016353 A016398 Adjacent sequences:  A243838 A243839 A243840 * A243842 A243843 A243844 KEYWORD sign AUTHOR Rajan Murthy, Jun 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 28 21:04 EDT 2022. Contains 354907 sequences. (Running on oeis4.)