|
|
A131038
|
|
a(1)=1. For n >= 2, Sum_{k|n, neither (k+1) nor (k-1) divides n} a(k) = 0. (The sum is over the isolated divisors of n. A divisor, k, of n is isolated if neither (k-1) nor (k+1) divides n.).
|
|
1
|
|
|
1, 0, -1, 0, -1, 0, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, -1, 1, 1, -1, 0, 0, 1, 0, 0, -1, -2, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -2, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, -1, 1, 1, -1, 1, -1, 1, 0, 0, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 0, 1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, 1, 1, 1, 0, -1, 0, 0, 0, -1, -1, -1, 0, -1, 1, -1, 0, -1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,30
|
|
COMMENTS
|
The value of a(2) is arbitrary. If a(2) is any number and the rest of the sequence remains unchanged, then the sum over isolated divisors still always equals 0 for all n >= 2.
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..65537
|
|
EXAMPLE
|
The positive divisors of 30 are 1,2,3,5,6,10,15,30. Of these, 1,2,3 are adjacent and 5 and 6 are adjacent. So the isolated divisors of 30 are 10,15,30. Therefore a(30) is such that a(10)+a(15)+a(30) = 1 +1 +a(30) =0. So a(30) = -2.
|
|
PROG
|
(PARI) A131038(n) = if(n<=2, 2-n, -((n%2)+sumdiv(n, d, if((d<n)&&(d>2)&&(n%(d-1))&&(n%(d+1)), A131038(d), 0)))); \\ Antti Karttunen, Apr 06 2021
|
|
CROSSREFS
|
Cf. A008683, A132881.
Sequence in context: A016427 A326170 A243841 * A016353 A016398 A024359
Adjacent sequences: A131035 A131036 A131037 * A131039 A131040 A131041
|
|
KEYWORD
|
sign,changed
|
|
AUTHOR
|
Leroy Quet, Sep 23 2007
|
|
EXTENSIONS
|
Extended by Ray Chandler, Jun 25 2008
|
|
STATUS
|
approved
|
|
|
|