The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131040 a(n) = (1/2+1/2*i*sqrt(11))^n + (1/2-1/2*i*sqrt(11))^n, where i=sqrt(-1). 3
 1, -5, -8, 7, 31, 10, -83, -113, 136, 475, 67, -1358, -1559, 2515, 7192, -353, -21929, -20870, 44917, 107527, -27224, -349805, -268133, 781282, 1585681, -758165, -5515208, -3240713, 13304911, 23027050, -16887683, -85968833, -35305784 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Generating floretion is 1.5i' + .5j' + .5k' + .5e whereas in A131039 it is 'i + .5i' + .5j' + .5k' + .5e Essentially the Lucas sequence V(1,3). - Peter Bala, Jun 23 2015 LINKS Wikipedia, Lucas sequence FORMULA a(n) = a(n-1) - 3*a(n-2); G.f. (1 - 6*x)/(1 - x + 3*x^2). a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x - 11*x^2))/2 )^n. - Peter Bala, Jun 23 2015 MAPLE Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[ 1.5i' + .5j' + .5k' + .5e] PROG (Sage) [lucas_number2(n, 1, 3) for n in range(1, 34)] # Zerinvary Lajos, May 14 2009 CROSSREFS Cf. A131039, A131041, A131042, A002316, A002531. Sequence in context: A314570 A039678 A259234 * A231786 A007450 A303816 Adjacent sequences:  A131037 A131038 A131039 * A131041 A131042 A131043 KEYWORD easy,sign AUTHOR Creighton Dement, Jun 11 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 23:03 EDT 2021. Contains 343071 sequences. (Running on oeis4.)