login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259234
Smallest b > 1 not occurring earlier in the sequence such that p = prime(n) satisfies b^(p-1) == 1 (mod p^2).
2
5, 8, 7, 18, 3, 19, 38, 28, 42, 14, 115, 76, 51, 75, 53, 338, 137, 264, 143, 11, 306, 31, 99, 184, 107, 181, 43, 164, 96, 68, 62, 58, 161, 328, 313, 78, 226, 65, 253, 259, 532, 298, 176, 276, 284, 174, 165, 69, 330, 44, 33, 332, 94, 263, 48, 79, 171, 747, 731
OFFSET
1,1
COMMENTS
Is this a permutation of the positive integers > 1?
LINKS
MAPLE
g:= proc() false end:
a:= proc(n) option remember; local b, p, pm, pp;
if n>0 then a(n-1); p:= ithprime(n); pm:=p-1; pp:= p^2;
for b from 2 while g(b) or b &^ pm mod pp <> 1 do od;
g(b):= true; b fi
end:
seq(a(n), n=1..100); # Alois P. Heinz, Jul 20 2015
MATHEMATICA
f[n_] := f[n] = Block[{b = 2, p = Prime@ n, lst = Array[f, n - 1]}, While[ PowerMod[b, p - 1, p^2] != 1 || MemberQ[lst, b], b++]; b]; Array[f, 60] (* Robert G. Wilson v, Jul 12 2015 *)
PROG
(PARI) v=vector(1); forprime(p=1, 50, b=2; while(Mod(b, p^2)^(p-1)!=1, b++; if(Mod(b, p^2)^(p-1)==1, for(k=1, #v, if(b==v[k], b++)))); v=concat(v, b); print1(v[#v], ", "))
(PARI) A259234=List(); for(n=1, 500, my(p=prime(n), b=1); until(Mod(b++, p^2)^(p-1)==1 && !setsearch(Set(A259234), b), ); listput(A259234, b); /*print1(b", ")*/) \\ M. F. Hasler, Jul 20 2015
CROSSREFS
Cf. A039678.
Sequence in context: A314569 A314570 A039678 * A131040 A231786 A007450
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Jun 29 2015
STATUS
approved