login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A259237
a(n) = least prime q such that q + prime(n) is a cube.
1
727, 5, 3, 1721, 53, 499, 47, 197, 41, 971, 1697, 179, 23, 173, 17, 11, 5, 3, 149, 929, 439, 137, 4013, 127, 2647, 1627, 113, 109, 107, 103, 89, 1597, 79, 373, 67, 2593, 59, 53, 3929, 43, 37, 331, 809, 23, 19, 17, 5, 2521, 773, 283, 3863, 761, 271, 5581, 743, 3833
OFFSET
1,1
COMMENTS
Corresponding values of (a(n)+prime(n))^(1/3): 9,2,2,12,4,8,4,6,4,10,12,6,4,6,4,4,4,4,6,10,8,6,16,6,14,12,6,6,6,6,6.
LINKS
MAPLE
f:= proc(n) local p, k;
p:= ithprime(n);
for k from ceil(p^(1/3)) do
if isprime(k^3 - p) then return k^3 - p fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Oct 17 2023
MATHEMATICA
Table[p=Prime[n]; x=Ceiling[p^(1/3)]; While[!PrimeQ[q=x^3-p], x++]; q, {n, 100}]
PROG
(PARI) a(n) = {p = prime(n); k=2; while(!ispower(p+k, 3), k = nextprime(k+1)); k; } \\ Michel Marcus, Jun 22 2015
CROSSREFS
Sequence in context: A216618 A185527 A306450 * A084412 A090268 A090267
KEYWORD
nonn,look
AUTHOR
Zak Seidov, Jun 22 2015
STATUS
approved