login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259235 Decimal expansion of sqrt(2*sqrt(3*sqrt(4*...))), a variant of Somos's quadratic recurrence constant. 2
2, 7, 6, 1, 2, 0, 6, 8, 4, 1, 9, 5, 7, 4, 9, 8, 0, 3, 3, 2, 3, 0, 4, 5, 4, 6, 4, 6, 5, 8, 0, 1, 3, 1, 1, 0, 4, 8, 7, 6, 1, 2, 5, 9, 8, 0, 7, 1, 5, 3, 0, 4, 8, 5, 0, 9, 5, 0, 7, 4, 5, 9, 6, 1, 3, 7, 5, 5, 9, 5, 5, 9, 1, 9, 4, 3, 9, 2, 7, 1, 5, 8, 3, 4, 8, 0, 1, 7, 2, 6, 6, 3, 0, 8, 9, 8, 9, 4, 4, 3, 4, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
Eric Weisstein's MathWorld, Somos's Quadratic Recurrence Constant
FORMULA
Equals A112302^2.
Equals exp( Sum_{n>=1} log(n)/2^(n-1) ).
Also equals exp(-2*PolyLog'(0,1/2)), where PolyLog' is the derivative of PolyLog(n,x) w.r.t. n.
EXAMPLE
2.7612068419574980332304546465801311048761259807153...
MATHEMATICA
RealDigits[Exp[-2*Derivative[1, 0][PolyLog][0, 1/2]], 10, 102] // First
RealDigits[Exp[2*Sum[(1/2)^n*Log[n], {n, 2, 2000}]], 10, 100][[1]] (* G. C. Greubel, Sep 30 2018 *)
PROG
(PARI) exp(sumpos(n=1, log(n+1)/2^n)) \\ Charles R Greathouse IV, Apr 18 2016
(Magma) SetDefaultRealField(RealField(100)); Exp(2*(&+[(1/2)^n*Log(n): n in [2..2000]])); // G. C. Greubel, Sep 30 2018
CROSSREFS
Sequence in context: A193746 A070524 A259830 * A371801 A264692 A021366
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 01:17 EDT 2024. Contains 375759 sequences. (Running on oeis4.)