login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291823 Number of ordered rooted trees with n non-root nodes and all outdegrees <= eight. 3
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16785, 58708, 207557, 740520, 2662812, 9640581, 35112513, 128563215, 472951884, 1747233370, 6479450415, 24111470952, 90006390290, 336953657070, 1264770431964, 4758911027946, 17946417454046, 67818937355227, 256781370248500 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Also the number of Dyck paths of semilength n with all ascent lengths <= eight.
Also the number of permutations p of [n] such that in 0p all up-jumps are <= eight and no down-jump is larger than 1. An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.
Differs from A000108 first at n = 9.
LINKS
N. Hein and J. Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015
FORMULA
G.f.: G(x)/x where G(x) is the reversion of x*(1-x)/(1-x^9). - Andrew Howroyd, Nov 30 2017
G.f. A(x) satisfies: A(x) = 1 + Sum_{k=1..8} x^k*A(x)^k. - Ilya Gutkovskiy, May 03 2019
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1), j=1..min(1, u))+
add(b(u+j-1, o-j), j=1..min(8, o)))
end:
a:= n-> b(0, n):
seq(a(n), n=0..30);
MATHEMATICA
b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
a[n_] := b[0, n, 8];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
PROG
(PARI) Vec(serreverse(x*(1-x)/(1-x*x^8) + O(x*x^25))) \\ Andrew Howroyd, Nov 29 2017
CROSSREFS
Column k=8 of A288942.
Cf. A000108.
Sequence in context: A287971 A033191 A261591 * A287972 A243838 A242450
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 01 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 09:31 EST 2023. Contains 367710 sequences. (Running on oeis4.)