login
A291824
Number of ordered rooted trees with n non-root nodes and all outdegrees <= nine.
2
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 58774, 207921, 742340, 2671380, 9679341, 35283057, 129298686, 476076425, 1760356290, 6534075415, 24337242771, 90934212636, 340748853950, 1280234838924, 4821722837721, 18200855131046, 68847269742844, 260929422296290
OFFSET
0,3
COMMENTS
Also the number of Dyck paths of semilength n with all ascent lengths <= nine.
Also the number of permutations p of [n] such that in 0p all up-jumps are <= nine and no down-jump is larger than 1. An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.
Differs from A000108 first at n = 10.
LINKS
N. Hein and J. Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015
FORMULA
G.f.: G(x)/x where G(x) is the reversion of x*(1-x)/(1-x^10). - Andrew Howroyd, Dec 01 2017
G.f. A(x) satisfies: A(x) = 1 + Sum_{k=1..9} x^k*A(x)^k. - Ilya Gutkovskiy, May 03 2019
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1), j=1..min(1, u))+
add(b(u+j-1, o-j), j=1..min(9, o)))
end:
a:= n-> b(0, n):
seq(a(n), n=0..30);
MATHEMATICA
b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
a[n_] := b[0, n, 9];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
PROG
(PARI) Vec(serreverse(x*(1-x)/(1-x*x^9) + O(x*x^25))) \\ Andrew Howroyd, Nov 29 2017
CROSSREFS
Column k=9 of A288942.
Cf. A000108.
Sequence in context: A242450 A211216 A261592 * A287973 A291825 A287974
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 01 2017
STATUS
approved