OFFSET
1,2
COMMENTS
Conjecture: For any integer m > 0, there are infinitely many positive integers n such that prime(n+i) is a primitive root modulo prime(n+j) for any distinct i and j among 0, 1, ..., m.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
EXAMPLE
a(1) = 1 since prime(1) = 2 and prime(2) = 3 are primitive roots modulo prime(3) = 5, and 2 and 5 are primitive roots modulo 3, and 3 and 5 are primitive roots modulo 2.
a(2) = 698 since prime(698) = 5261 and prime(699) = 5273 are primitive roots modulo prime(700) = 5279, and 5261 and 5279 are primitive roots modulo 5273, and 5273 and 5279 are primitive roots modulo 5261.
MATHEMATICA
dv[n_]:=Divisors[n]
m=0; Do[Do[If[Mod[Prime[n+1]^(Part[dv[Prime[n]-1], j]), Prime[n]]==1||Mod[Prime[n+2]^(Part[dv[Prime[n]-1], j]), Prime[n]]==1, Goto[aa]], {j, 1, Length[dv[Prime[n]-1]]-1}]; Do[If[Mod[Prime[n]^(Part[dv[Prime[n+1]-1], i]), Prime[n+1]]==1||Mod[Prime[n+2]^(Part[dv[Prime[n+1]-1], i]), Prime[n+1]]==1, Goto[aa]], {i, 1, Length[dv[Prime[n+1]-1]]-1}]; Do[If[Mod[Prime[n]^(Part[dv[Prime[n+2]-1], j]), Prime[n+2]]==1||Mod[Prime[n+1]^(Part[dv[Prime[n+2]-1], j]), Prime[n+2]]==1, Goto[aa]], {j, 1, Length[dv[Prime[n+2]-1]]-1}]; m=m+1; Print[m, " ", n]; Label[aa]; Continue, {n, 1, 7990}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jun 11 2014
STATUS
approved