login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243837
Positive integers n such that prime(n+i) is a primitive root modulo prime(n+j) for any distinct i and j among 0, 1, 2.
4
1, 698, 890, 911, 1003, 1141, 1413, 1717, 1807, 1947, 1948, 2216, 2254, 2329, 2455, 2768, 3169, 3224, 3537, 3624, 3737, 3766, 3896, 3904, 3921, 3959, 4027, 4275, 4359, 4427, 4649, 4708, 4845, 5051, 5378, 5386, 5396, 5896, 5897, 6100, 6223, 6226, 6351, 6377
OFFSET
1,2
COMMENTS
Conjecture: For any integer m > 0, there are infinitely many positive integers n such that prime(n+i) is a primitive root modulo prime(n+j) for any distinct i and j among 0, 1, ..., m.
LINKS
Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
EXAMPLE
a(1) = 1 since prime(1) = 2 and prime(2) = 3 are primitive roots modulo prime(3) = 5, and 2 and 5 are primitive roots modulo 3, and 3 and 5 are primitive roots modulo 2.
a(2) = 698 since prime(698) = 5261 and prime(699) = 5273 are primitive roots modulo prime(700) = 5279, and 5261 and 5279 are primitive roots modulo 5273, and 5273 and 5279 are primitive roots modulo 5261.
MATHEMATICA
dv[n_]:=Divisors[n]
m=0; Do[Do[If[Mod[Prime[n+1]^(Part[dv[Prime[n]-1], j]), Prime[n]]==1||Mod[Prime[n+2]^(Part[dv[Prime[n]-1], j]), Prime[n]]==1, Goto[aa]], {j, 1, Length[dv[Prime[n]-1]]-1}]; Do[If[Mod[Prime[n]^(Part[dv[Prime[n+1]-1], i]), Prime[n+1]]==1||Mod[Prime[n+2]^(Part[dv[Prime[n+1]-1], i]), Prime[n+1]]==1, Goto[aa]], {i, 1, Length[dv[Prime[n+1]-1]]-1}]; Do[If[Mod[Prime[n]^(Part[dv[Prime[n+2]-1], j]), Prime[n+2]]==1||Mod[Prime[n+1]^(Part[dv[Prime[n+2]-1], j]), Prime[n+2]]==1, Goto[aa]], {j, 1, Length[dv[Prime[n+2]-1]]-1}]; m=m+1; Print[m, " ", n]; Label[aa]; Continue, {n, 1, 7990}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jun 11 2014
STATUS
approved