login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293203
Numbers k such that A090086(k), the smallest pseudoprime to base k (not necessarily exceeding k), is a Carmichael number.
3
700, 1040, 1150, 1848, 2590, 2660, 6710, 6862, 7000, 7716, 7852, 8060, 8528, 9275, 9875, 10103, 10640, 11830, 12010, 12688, 13340, 16520, 17350, 17570, 17960, 18130, 18340, 19203, 19272, 19420, 19820, 19978, 20410, 20442, 20480, 20612, 20720, 23016, 23463
OFFSET
1,1
COMMENTS
The corresponding Carmichael numbers are 561, 561, 561, 1105, 561, 561, 1729, 561, 561, 1105, 561, 561, 561, 561, 561, 561, 561, 561, 561, ...
Andrzej Schinzel proved that this sequence is infinite. Conjecture: if A090086(n) is a Carmichael number k, then k < n. - Thomas Ordowski, Aug 08 2018
LINKS
Andrzej Rotkiewicz, Solved and unsolved problems on pseudoprime numbers and their generalizations, Applications of Fibonacci numbers, Springer Netherlands, 1999, pp. 293-306.
EXAMPLE
700 is the sequence since A090086(700) = 561 is a Carmichael number.
MATHEMATICA
carmichaelQ[n_] := Divisible[n - 1, CarmichaelLambda[n]] && ! PrimeQ[n];
f[n_] := Block[{k = 1}, While[GCD[n, k] > 1 || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, j = k++]; k]; Select[Range[10000], carmichaelQ[f[#]] &] (* after Robert G.Wilson v at A090086 *)
CROSSREFS
Sequence in context: A133251 A243837 A116338 * A157366 A293279 A250530
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 12 2017
STATUS
approved