OFFSET
1,1
COMMENTS
The corresponding Carmichael numbers are 561, 561, 561, 1105, 561, 561, 1729, 561, 561, 1105, 561, 561, 561, 561, 561, 561, 561, 561, 561, ...
Andrzej Schinzel proved that this sequence is infinite. Conjecture: if A090086(n) is a Carmichael number k, then k < n. - Thomas Ordowski, Aug 08 2018
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Andrzej Rotkiewicz, Periodic sequences of pseudoprimes connected with Carmichael number and the least period of the function l_x^C, Acta Arithmetica, Vol. 91, No. 1 (1999), pp. 75-83.
Andrzej Rotkiewicz, Solved and unsolved problems on pseudoprime numbers and their generalizations, Applications of Fibonacci numbers, Springer Netherlands, 1999, pp. 293-306.
EXAMPLE
700 is the sequence since A090086(700) = 561 is a Carmichael number.
MATHEMATICA
carmichaelQ[n_] := Divisible[n - 1, CarmichaelLambda[n]] && ! PrimeQ[n];
f[n_] := Block[{k = 1}, While[GCD[n, k] > 1 || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, j = k++]; k]; Select[Range[10000], carmichaelQ[f[#]] &] (* after Robert G.Wilson v at A090086 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 12 2017
STATUS
approved