login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293201
Primes p with a primitive root g such that g^3 = g^2 + g + 1 mod p.
2
7, 11, 13, 17, 19, 41, 47, 53, 73, 107, 131, 139, 149, 163, 167, 199, 227, 257, 263, 269, 271, 293, 311, 347, 349, 359, 373, 401, 419, 421, 431, 479, 523, 557, 599, 617, 683, 701, 757, 761, 769, 809, 827, 863, 877, 907, 911, 929, 937, 953, 991, 1031, 1033
OFFSET
1,1
COMMENTS
Since g^3 = g^2 + g + 1, we have g^4 = g^3 + g^2 + g, g^5 = g^4 + g^3 + g^2, g^6 = g^5 + g^4 + g^3, ..., g^(k+3) = g^(k+2) + g^(k+1) + g^k. Hence using g and g^2 we can compute all powers of the primitive root similar to A003147, where we have g^(k+2) = g^(k+1) + g^k (see the Shanks reference).
LINKS
D. Shanks, Fibonacci primitive roots, end of article, Fib. Quart., 10 (1972), 163-168, 181.
MAPLE
filter:= proc(p) local x, r;
if not isprime(p) then return false fi;
for r in map(t -> rhs(op(t)), [msolve(x^3-x^2-x-1, p)]) do
if numtheory:-order(r, p) = p-1 then return true fi
od;
false
end proc:
select(filter, [seq(i, i=3..2000, 2)]); # Robert Israel, Oct 02 2017
MATHEMATICA
selQ[p_] := AnyTrue[PrimitiveRootList[p], Mod[#^3 - #^2 - # - 1, p] == 0&];
Select[Prime[Range[2, 200]], selQ] (* Jean-François Alcover, Jul 29 2020 *)
PROG
(PARI)
Z(r, p)=znorder(Mod(r, p))==p-1; \\ whether r is a primitive root mod p
Y(p)=for(r=2, p-2, if( Z(r, p) && Mod(r^3-r^2-r-1, p)==0 , return(1))); 0; \\ test p
forprime(p=2, 10^3, if(Y(p), print1(p, ", ")) );
CROSSREFS
Cf. A003147 (primitive root g such that g^2 = g + 1 mod p).
Cf. A293200 (primitive root g such that g^3 = g + 1 mod p).
Sequence in context: A214786 A176834 A098414 * A110583 A270999 A103486
KEYWORD
nonn
AUTHOR
Joerg Arndt, Oct 02 2017
STATUS
approved