login
A158341
a(n) = A013928(A002110(n)).
2
0, 1, 4, 18, 128, 1404, 18261, 310346, 5896727, 135624239, 3933101823, 121926157640, 4511267827531, 184961980943492, 7953365180610400, 373808163488684049, 19811832664899731265, 1168898127229083969892
OFFSET
0,3
FORMULA
a(n) = -1 + Sum_{i=1..floor(sqrt(A002110(n)))} moebius(i)*floor(A002110(n)/i^2). - Jinyuan Wang, Jan 24 2025
MATHEMATICA
Table[-1 + Sum[MoebiusMu[k]*Floor[#/(k^2)], {k, Floor[Sqrt[#]]}] &[Product[Prime[i], {i, n}]], {n, 0, 12}] (* Michael De Vlieger, Jan 24 2025 *)
PROG
(PARI) a(n) = my(t=vecprod(primes(n))-1); sum(i=1, sqrtint(t), t\i^2*moebius(i)); \\ Jinyuan Wang, Jan 24 2025
(Python)
from math import isqrt
from sympy import primorial, mobius
def A158341(n):
if n == 0: return 0
m = primorial(n)-1
return sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1)) # Chai Wah Wu, Jan 25 2025
CROSSREFS
KEYWORD
nonn,more,changed
AUTHOR
Mats Granvik, Mar 16 2009
EXTENSIONS
Extended and offset corrected by Max Alekseyev, Sep 13 2009
a(15) from Michael De Vlieger, Jan 24 2025
a(16)-a(17) from Chai Wah Wu, Jan 25 2025
STATUS
approved