login
A294462
E.g.f.: Product_{k>0} (1-k*x^k)^(-1/k).
9
1, 1, 4, 18, 132, 900, 10080, 93240, 1285200, 16526160, 264600000, 3950100000, 81280584000, 1401728328000, 30861115084800, 663835444272000, 16425316331424000, 380082583808928000, 10885891543502976000, 279441709690118976000, 8697410321979899520000
OFFSET
0,3
LINKS
FORMULA
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} A055225(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(k-1)*x^(j*k)/k). - Ilya Gutkovskiy, May 28 2018
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, (1-k*x^k)^(1/k))))
CROSSREFS
Column k=1 of A294761.
Sequence in context: A158341 A144272 A034517 * A194559 A356542 A371038
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 31 2017
STATUS
approved