OFFSET
0,2
COMMENTS
Self-convolution cube equals A370335.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..630
FORMULA
a(n) ~ (-1)^(n+1) * c * d^n / n^(4/3), where d = 16.061038491618401040959460250524051290971925631740259277535... and c = 0.25648790376068702946627569573532916303248367815529074... - Vaclav Kotesovec, Feb 24 2024
EXAMPLE
G.f.: A(x) = 1 + 5*x - 25*x^2 + 300*x^3 - 3000*x^4 + 34375*x^5 - 426750*x^6 + 5539375*x^7 - 73968750*x^8 + 1010175000*x^9 - 14043011250*x^10 + ...
RELATED SERIES.
The cube of the g.f. A(x) yields the g.f. of A370335 starting as
A(x)^3 = 1 + 15*x + 275*x^3 + 5375*x^6 + 106875*x^10 + 2134375*x^15 + 42671875*x^21 + 853359375*x^28 + 17066796875*x^36 + ... + 5^n*(2*4^n + 1)/3 * x^(n*(n+1)/2) + ...
PROG
(PARI) {a(n) = my(A);
A = sum(m=0, sqrtint(2*n+1), 5^m*(2*4^m + 1)/3 * x^(m*(m+1)/2) +x*O(x^n))^(1/3);
polcoeff(H=A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 23 2024
STATUS
approved