login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084223
Numerators of successive approximations to zeta(3) = Sum_{k>0} 1/k^3, using Zeilberger's formula with s=2.
3
29, 2077, 389467, 23511309071, 250074841297, 217632439585619, 2271157731457180823, 39331108008268763851, 152552947614179997630583, 30344459362884140864563052777
OFFSET
1,1
LINKS
D. Zeilberger, Faster and Faster convergent series for zeta(3), arXiv:math/9804126 [math.CO], 1998.
FORMULA
a(n) = numerator( Sum_{k=1..n} (1/4)*(-1)^(k-1)*(56*k^2 - 32*k + 5)/((2*k - 1)^2* binomial(3*k, k)*binomial(2*k, k)*k^3). - G. C. Greubel, Oct 08 2018
MAPLE
a:=n->add((1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*binomial(3*k, k)*binomial(2*k, k)*k^3), k=1..n): seq(numer(a(n)), n=1..10); # Muniru A Asiru, Oct 09 2018
MATHEMATICA
Table[Numerator[Sum[(1/4)*(-1)^(k - 1)*(56*k^2 - 32*k + 5)/((2*k - 1)^2* Binomial[3*k, k]*Binomial[2*k, k]*k^3), {k, 1, n}]], {n, 1, 30}] (* G. C. Greubel, Oct 08 2018 *)
PROG
(PARI) for(n=1, 15, print1(numerator(sum(k=1, n, 1/4*(-1)^(k-1)*(56*k^2 -32*k+5)/(2*k-1)^2/binomial(3*k, k)/binomial(2*k, k)/k^3)), ", "))
(Magma) [Numerator((&+[(1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*Binomial(3*k, k)*Binomial(2*k, k)*k^3): k in [1..n]])): n in [1..30]]; // G. C. Greubel, Oct 08 2018
(GAP) List(List([1..10], n->Sum([1..n], k->(1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*Binomial(3*k, k)*Binomial(2*k, k)*k^3))), NumeratorRat); # Muniru A Asiru, Oct 09 2018
CROSSREFS
Denominators are in A084224, decimal expansion is in A002117.
Cf. A084225 (s=3).
Sequence in context: A042624 A190826 A045688 * A138755 A265445 A370339
KEYWORD
nonn,frac
AUTHOR
Ralf Stephan, May 19 2003
STATUS
approved