login
A084223
Numerators of successive approximations to zeta(3) = Sum_{k>0} 1/k^3, using Zeilberger's formula with s=2.
3
29, 2077, 389467, 23511309071, 250074841297, 217632439585619, 2271157731457180823, 39331108008268763851, 152552947614179997630583, 30344459362884140864563052777
OFFSET
1,1
LINKS
D. Zeilberger, Faster and Faster convergent series for zeta(3), arXiv:math/9804126 [math.CO], 1998.
FORMULA
a(n) = numerator( Sum_{k=1..n} (1/4)*(-1)^(k-1)*(56*k^2 - 32*k + 5)/((2*k - 1)^2* binomial(3*k, k)*binomial(2*k, k)*k^3). - G. C. Greubel, Oct 08 2018
MAPLE
a:=n->add((1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*binomial(3*k, k)*binomial(2*k, k)*k^3), k=1..n): seq(numer(a(n)), n=1..10); # Muniru A Asiru, Oct 09 2018
MATHEMATICA
Table[Numerator[Sum[(1/4)*(-1)^(k - 1)*(56*k^2 - 32*k + 5)/((2*k - 1)^2* Binomial[3*k, k]*Binomial[2*k, k]*k^3), {k, 1, n}]], {n, 1, 30}] (* G. C. Greubel, Oct 08 2018 *)
PROG
(PARI) for(n=1, 15, print1(numerator(sum(k=1, n, 1/4*(-1)^(k-1)*(56*k^2 -32*k+5)/(2*k-1)^2/binomial(3*k, k)/binomial(2*k, k)/k^3)), ", "))
(Magma) [Numerator((&+[(1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*Binomial(3*k, k)*Binomial(2*k, k)*k^3): k in [1..n]])): n in [1..30]]; // G. C. Greubel, Oct 08 2018
(GAP) List(List([1..10], n->Sum([1..n], k->(1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*Binomial(3*k, k)*Binomial(2*k, k)*k^3))), NumeratorRat); # Muniru A Asiru, Oct 09 2018
CROSSREFS
Denominators are in A084224, decimal expansion is in A002117.
Cf. A084225 (s=3).
Sequence in context: A042624 A190826 A045688 * A138755 A265445 A370339
KEYWORD
nonn,frac
AUTHOR
Ralf Stephan, May 19 2003
STATUS
approved