login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084220
a(n) = sigma_6(n^2)/sigma_3(n^2).
10
1, 57, 703, 3641, 15501, 40071, 117307, 233017, 512461, 883557, 1770231, 2559623, 4824613, 6686499, 10897203, 14913081, 24132657, 29210277, 47039023, 56439141, 82466821, 100903167, 148023723, 163810951, 242203001, 275002941, 373584043
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (p^(6*e + 3) + 1)/(p^3 + 1). - Amiram Eldar, Sep 13 2020
Sum_{k>=1} 1/a(k) = 1.019347996519986873084210965032965644185467985307512751244884310846924559959... - Vaclav Kotesovec, Sep 24 2020
Sum_{k=1..n} a(k) ~ c * n^7, where c = 90*zeta(7)/(7*Pi^4) = 0.133093... . - Amiram Eldar, Oct 30 2022
From Seiichi Manyama, May 18 2024: (Start)
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( n/gcd(x_1, x_2, x_3, n) )^3.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^3 * sigma_6(d). (End)
MAPLE
with(numtheory): a:=n->sigma[6](n^2)/sigma[3](n^2): seq(a(n), n=1..30); # Muniru A Asiru, Oct 09 2018
MATHEMATICA
Table[DivisorSigma[6, n^2]/DivisorSigma[3, n^2], {n, 30}] (* Harvey P. Dale, May 02 2012 *)
f[p_, e_] := (p^(6*e + 3) + 1)/(p^3 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Sep 13 2020 *)
PROG
(PARI) a(n)=sumdiv(n^2, d, d^6)/sumdiv(n^2, d, d^3)
(PARI) a(n) = sigma(n^2, 6)/sigma(n^2, 3); \\ Michel Marcus, Oct 09 2018
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Benoit Cloitre, Jun 21 2003
STATUS
approved