login
A084219
Inverse binomial transform of A053088.
2
1, -1, 4, -8, 20, -44, 100, -220, 484, -1052, 2276, -4892, 10468, -22300, 47332, -100124, 211172, -444188, 932068, -1951516, 4077796, -8505116, 17709284, -36816668, 76429540, -158451484, 328087780, -678545180, 1401829604
OFFSET
0,3
COMMENTS
Contribution from Gary W. Adamson, Jan 05 2009: (Start)
Unsigned, starting with offset 1: generated from iterates of M * [1,1,1,...]
where M = a tridiagonal matrix with [0,1,1,1,...] as the main diagonal,
[1,1,1,...] as the uperdiagonal and [2,0,0,0,...] as the subdiagonal. (End)
Define a triangle via T(n,0) = T(n,n) = A001045(n) and T(r,c) = T(r-1,c-1) + T(r-1,c). The row sums of the triangle are s(n) = 0, 2, 4, 12, ... = 2*A059570(n), and their first differences are s(n+1)-s(n) = 2*|a(n)|. J. M. Bergot, May 15 2013
FORMULA
a(n) = (4 - 3*n*(-2)^(n-1) + 5*(-2)^n)/9.
a(n) = (1/4) + Sum_{k=0..n} (-2)^k*(k+3)/4.
G.f.: (1+x)^2/((1-x)(1+2x)^2).
MATHEMATICA
LinearRecurrence[{-3, 0, 4}, {1, -1, 4}, 30] (* Harvey P. Dale, Dec 16 2016 *)
CROSSREFS
Sequence in context: A009889 A334706 A095804 * A190589 A009916 A203167
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 20 2003
STATUS
approved