|
|
A084221
|
|
a(n+2) = 4*a(n), with a(0)=1, a(1)=3.
|
|
17
|
|
|
1, 3, 4, 12, 16, 48, 64, 192, 256, 768, 1024, 3072, 4096, 12288, 16384, 49152, 65536, 196608, 262144, 786432, 1048576, 3145728, 4194304, 12582912, 16777216, 50331648, 67108864, 201326592, 268435456, 805306368, 1073741824, 3221225472, 4294967296, 12884901888
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Binomial transform is A060925. Binomial transform of A084222.
Sequences with similar recurrence rules: A016116 (multiplier 2), A038754 (multiplier 3), A133632 (multiplier 5). See A133632 for general formulas. - Hieronymus Fischer, Sep 19 2007
Equals A133080 * A000079. A122756 is a companion sequence. - Gary W. Adamson, Sep 19 2007
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Hester Graves, The Minimal Euclidean Function on the Gaussian Integers, arXiv:1802.08281 [math.NT], 2018. See Definition 2.3 p.3.
Index entries for linear recurrences with constant coefficients, signature (0,4)
|
|
FORMULA
|
a(n) = (5*2^n-(-2)^n)/4.
G.f.: (1+3*x)/((1-2*x)(1+2*x)).
E.g.f.: (5*exp(2*x) - exp(-2*x))/4.
a(n) = A133628(n) - A133628(n-1) for n>1. - Hieronymus Fischer, Sep 19 2007
Equals A133080 * [1, 2, 4, 8, ...]. Row sums of triangle A133087. - Gary W. Adamson, Sep 08 2007
a(n+1)-2a(n) = A000079 signed. a(n)+a(n+2)=5*a(n). First differences give A135520. - Paul Curtz, Apr 22 2008
a(n) = A074323(n+1)*A016116(n). - R. J. Mathar, Jul 08 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = Sum_{k=0..n+1} A181650(n+1,k)*2^k. - Philippe Deléham, Nov 19 2011
a(2*n) = A000302(n); a(2*n+1) = A164346(n). - Philippe Deléham, Mar 21 2014
|
|
EXAMPLE
|
Binary...............Decimal
1..........................1
11.........................3
100........................4
1100......................12
10000.....................16
110000....................48
1000000...................64
11000000.................192
100000000................256
1100000000...............768
10000000000.............1024
110000000000............3072, etc. - Philippe Deléham, Mar 21 2014
|
|
MATHEMATICA
|
CoefficientList[Series[(-3*x - 1)/(4*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
|
|
PROG
|
(Magma) [(5*2^n-(-2)^n)/4: n in [0..40]]; // Vincenzo Librandi, Aug 13 2011
(PARI) a(n)=([0, 1; 4, 0]^n*[1; 3])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016
|
|
CROSSREFS
|
For partial sums see A133628. Partial sums for other multipliers p: A027383(p=2), A087503(p=3), A133629(p=5).
Other related sequences: A132666, A132667, A132668, A132669.
Cf. A000302, A133080, A133087, A164346.
Sequence in context: A282458 A360755 A348949 * A142866 A274224 A280525
Adjacent sequences: A084218 A084219 A084220 * A084222 A084223 A084224
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paul Barry, May 21 2003
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Dec 14 2007
|
|
STATUS
|
approved
|
|
|
|