OFFSET
1,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..328
D. Zeilberger, Faster and Faster convergent series for zeta(3), arXiv:math/9804126 [math.CO], 1998.
FORMULA
a(n) = denominator( Sum_{k=1..n} (1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2 * binomial(3*k,k) * binomial(2*k,k) * k^3) ). - G. C. Greubel, Oct 08 2018
MAPLE
a:=n->add((1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*binomial(3*k, k)*binomial(2*k, k)*k^3), k=1..n): seq(denom(a(n)), n=1..10); # Muniru A Asiru, Oct 09 2018
MATHEMATICA
Table[Denominator[Sum[(1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*Binomial[3*k, k]* Binomial[2*k, k]*k^3), {k, 1, n}]], {n, 1, 30}] (* G. C. Greubel, Oct 08 2018 *)
PROG
(PARI) for(n=1, 15, print1(denominator(sum(k=1, n, (1/4)*(-1)^(k-1)*(56*k^2 -32*k +5)/((2*k-1)^2*binomial(3*k, k) *binomial(2*k, k)*k^3))), ", "))
(Magma) [Denominator((&+[(1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*Binomial(3*k, k)*Binomial(2*k, k)*k^3): k in [1..n]])): n in [1..30]]; // G. C. Greubel, Oct 08 2018
(GAP) List(List([1..10], n->Sum([1..n], k->(1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*Binomial(3*k, k)*Binomial(2*k, k)*k^3))), DenominatorRat); # Muniru A Asiru, Oct 09 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Ralf Stephan, May 19 2003
STATUS
approved