login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348589
a(n) = (10^n+2)^2 / 6.
1
24, 1734, 167334, 16673334, 1666733334, 166667333334, 16666673333334, 1666666733333334, 166666667333333334, 16666666673333333334, 1666666666733333333334, 166666666667333333333334, 16666666666673333333333334, 1666666666666733333333333334
OFFSET
1,1
COMMENTS
Numbers q.r such that q.r = 3*q*r, when q and r have the same number of digits, "." means concatenation, r = 2q and r may not begin with 0.
We must solve the Diophantine equation q.r = q*10^m+r = 3 * q*r where m = length(q) = length(r).
The number of solutions is infinite with (r, q) = ((10^n+2)/3, (10^n+2)/6) and n >= 1.
Note that 15 satisfies also q.r = 3*q*r, 15 = 3*1*5 with here r = 5*q.
For further information about the general equation q.r = k * q*r, see A347541.
Problem proposed on the French website Diophante (see link).
FORMULA
a(n) = (10^n+2)^2 / 6.
a(n) = A133384(n-1)^2/6.
G.f.: 6*x*(4-155*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)). - Stefano Spezia, Oct 25 2021
a(n) = 3*A102807(n)/2. - Hugo Pfoertner, Oct 30 2021
EXAMPLE
a(1) = 12^2 / 6 = 24 and 2.4 = 3 * 2*4.
a(2) = 102^2 / 6 = 1734 and 17.34 = 3 * 17*34.
MAPLE
seq((10^n+2)^2 / 6, n=1..14);
MATHEMATICA
Table[(10^n + 2)^2/6, {n, 1, 14}] (* Amiram Eldar, Oct 24 2021 *)
PROG
(Python)
def a(n): return (10**n+2)**2//6
print([a(n) for n in range(1, 15)]) # Michael S. Branicky, Oct 24 2021
CROSSREFS
Subsequence of A347541.
Sequence in context: A054777 A301392 A084224 * A227257 A222999 A166788
KEYWORD
nonn,base,easy
AUTHOR
Bernard Schott, Oct 24 2021
STATUS
approved