Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Nov 02 2021 14:08:31
%S 24,1734,167334,16673334,1666733334,166667333334,16666673333334,
%T 1666666733333334,166666667333333334,16666666673333333334,
%U 1666666666733333333334,166666666667333333333334,16666666666673333333333334,1666666666666733333333333334
%N a(n) = (10^n+2)^2 / 6.
%C Numbers q.r such that q.r = 3*q*r, when q and r have the same number of digits, "." means concatenation, r = 2q and r may not begin with 0.
%C We must solve the Diophantine equation q.r = q*10^m+r = 3 * q*r where m = length(q) = length(r).
%C The number of solutions is infinite with (r, q) = ((10^n+2)/3, (10^n+2)/6) and n >= 1.
%C Note that 15 satisfies also q.r = 3*q*r, 15 = 3*1*5 with here r = 5*q.
%C For further information about the general equation q.r = k * q*r, see A347541.
%C Problem proposed on the French website Diophante (see link).
%H Diophante, <a href="http://www.diophante.fr/problemes-par-themes/arithmetique-et-algebre/a1-pot-pourri/1024-a1945-concatenations-en-tous-genres">A1945 - Concaténations en tous genres</a> (in French).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000).
%F a(n) = (10^n+2)^2 / 6.
%F a(n) = A133384(n-1)^2/6.
%F G.f.: 6*x*(4-155*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)). - _Stefano Spezia_, Oct 25 2021
%F a(n) = 3*A102807(n)/2. - _Hugo Pfoertner_, Oct 30 2021
%e a(1) = 12^2 / 6 = 24 and 2.4 = 3 * 2*4.
%e a(2) = 102^2 / 6 = 1734 and 17.34 = 3 * 17*34.
%p seq((10^n+2)^2 / 6, n=1..14);
%t Table[(10^n + 2)^2/6, {n, 1, 14}] (* _Amiram Eldar_, Oct 24 2021 *)
%o (Python)
%o def a(n): return (10**n+2)**2//6
%o print([a(n) for n in range(1, 15)]) # _Michael S. Branicky_, Oct 24 2021
%Y Cf. A102807, A133384, A147553.
%Y Subsequence of A347541.
%K nonn,base,easy
%O 1,1
%A _Bernard Schott_, Oct 24 2021