login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348591
a(n) = L(n)*L(n+1) mod F(n+2) where F=A000045 is the Fibonacci numbers and L = A000032 is the Lucas numbers.
2
0, 1, 0, 3, 5, 3, 18, 3, 52, 3, 141, 3, 374, 3, 984, 3, 2581, 3, 6762, 3, 17708, 3, 46365, 3, 121390, 3, 317808, 3, 832037, 3, 2178306, 3, 5702884, 3, 14930349, 3, 39088166, 3, 102334152, 3, 267914293, 3, 701408730, 3, 1836311900, 3, 4807526973, 3, 12586269022, 3, 32951280096, 3, 86267571269, 3
OFFSET
0,4
FORMULA
a(n) = 3 if n >= 3 is odd.
a(n) = A000045(n+2)-3 if n >= 2 is even.
a(n) + a(n+1) - 3*a(n+2) - 3*a(n+3) + a(n+4) + a(n+5) = 0 for n >= 2.
G.f.: -x*(2*x^5-5*x^3-x-1)/((x+1)*(x^2+x-1)*(x^2-x-1)). - Alois P. Heinz, Jan 26 2022
EXAMPLE
a(5) = L(5)*L(6) mod F(7) = 11*18 mod 13 = 3.
MAPLE
F:= combinat:-fibonacci:
L:= n -> F(n-1)+F(n+1):
map(n -> L(n)*L(n+1) mod F(n+2), [$0..30]);
MATHEMATICA
a[n_] := Mod[LucasL[n] * LucasL[n + 1], Fibonacci[n + 2]]; Array[a, 50, 0] (* Amiram Eldar, Jan 26 2022 *)
PROG
(Python)
from gmpy2 import fib, lucas2
def A348591(n): return (lambda x, y:int(x[0]*x[1] % y))(lucas2(n+1), fib(n+2)) # Chai Wah Wu, Jan 26 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
J. M. Bergot and Robert Israel, Jan 25 2022
STATUS
approved