login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134771
A134770 interleaved with threes.
6
1, 3, 5, 3, 21, 3, 77, 3, 277, 3, 1005, 3, 3693, 3, 13725, 3, 51477, 3, 194477, 3, 739021, 3, 2821725, 3, 10816621, 3, 41602397, 3, 160466397, 3, 620470077, 3, 2404321557, 3, 9334424877, 3, 36300541197, 3, 141381055197, 3, 551386115277, 3, 2153031497757, 3
OFFSET
0,2
COMMENTS
Previous name was: A007318^(-2) * A134770.
Second inverse binomial transform of A134770.
A134770 interleaved with threes.
LINKS
FORMULA
From G. C. Greubel, Oct 13 2023: (Start)
a(n) = 2*(1 + (-1)^n)*binomial(n, n/2) - 3*(-1)^n.
G.f.: 2/sqrt(1-4*x^2) - 3/(1+x).
E.g.f.: 4*BesselI(0, 2*x) - 3*exp(-x). (End)
EXAMPLE
First few terms of the sequence are (1, 3, 5, 3, 21, 3, 77, ...), since A134770 = (1, 3, 5, 21, 77, ...).
MATHEMATICA
Table[If[OddQ[n], 3, 4*Binomial[n, n/2] -3], {n, 0, 50}] (* G. C. Greubel, Oct 13 2023 *)
PROG
(Magma)
A134771:= func< n | (n mod 2) eq 1 select 3 else 2*(n+2)*Catalan(Floor(n/2))-3 >;
[A134771(n): n in [0..50]]; // G. C. Greubel, Oct 13 2023
(SageMath)
def A134771(n): return 4*((n+1)%2)*binomial(n, n//2) - 3*(-1)^n
[A134771(n) for n in range(41)] # G. C. Greubel, Oct 13 2023
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Gary W. Adamson, Nov 10 2007
EXTENSIONS
Name changed by G. C. Greubel, Oct 13 2023
STATUS
approved