login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134770 interleaved with threes.
6

%I #20 Oct 14 2023 06:56:33

%S 1,3,5,3,21,3,77,3,277,3,1005,3,3693,3,13725,3,51477,3,194477,3,

%T 739021,3,2821725,3,10816621,3,41602397,3,160466397,3,620470077,3,

%U 2404321557,3,9334424877,3,36300541197,3,141381055197,3,551386115277,3,2153031497757,3

%N A134770 interleaved with threes.

%C Previous name was: A007318^(-2) * A134770.

%C Second inverse binomial transform of A134770.

%C A134770 interleaved with threes.

%H G. C. Greubel, <a href="/A134771/b134771.txt">Table of n, a(n) for n = 0..1000</a>

%F From _G. C. Greubel_, Oct 13 2023: (Start)

%F a(n) = 2*(1 + (-1)^n)*binomial(n, n/2) - 3*(-1)^n.

%F G.f.: 2/sqrt(1-4*x^2) - 3/(1+x).

%F E.g.f.: 4*BesselI(0, 2*x) - 3*exp(-x). (End)

%e First few terms of the sequence are (1, 3, 5, 3, 21, 3, 77, ...), since A134770 = (1, 3, 5, 21, 77, ...).

%t Table[If[OddQ[n], 3, 4*Binomial[n,n/2] -3], {n,0,50}] (* _G. C. Greubel_, Oct 13 2023 *)

%o (Magma)

%o A134771:= func< n | (n mod 2) eq 1 select 3 else 2*(n+2)*Catalan(Floor(n/2))-3 >;

%o [A134771(n): n in [0..50]]; // _G. C. Greubel_, Oct 13 2023

%o (SageMath)

%o def A134771(n): return 4*((n+1)%2)*binomial(n, n//2) - 3*(-1)^n

%o [A134771(n) for n in range(41)] # _G. C. Greubel_, Oct 13 2023

%Y Cf. A000984, A010701, A134770.

%K nonn,easy,less

%O 0,2

%A _Gary W. Adamson_, Nov 10 2007

%E Name changed by _G. C. Greubel_, Oct 13 2023