login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348594
Numbers m such that m^2 + 1 = p*q with p, q primes and m = (p + q)/2 - 1.
0
8, 50, 1250, 1800, 2450, 9800, 14450, 20000, 24200, 101250, 105800, 135200, 162450, 168200, 204800, 304200, 336200, 451250, 480200, 490050, 530450, 696200, 924800, 966050, 1008200, 1125000, 1155200, 1428050, 1805000, 2332800, 2420000, 2576450, 2761250, 2832200
OFFSET
1,1
COMMENTS
Subsequence of A085722.
The corresponding pairs (p, q) of the sequence are (5, 13), (41, 61), (1201, 1301), (1741, 1861), (2381, 2521), (9661, 9941), (14281, 14621), (19801, 20201), (23981, 24421), (100801, 101701), ...
Property:
a(n) = 2* A109306(n)^2 and a(n) == 0 (mod 50) for n > 1. Proof:
From the relations:
(1) m^2 + 1 = p*q
(2) (p + q)/2 = m + 1
We obtain:
(3) p = m + 1 - sqrt(8*m)/2
(4) q = m + 1 + sqrt(8*m)/2
with m = 2*k^2 we obtain:
(5) p = k^2 + (k-1)^2
(6) q = k^2 + (k+1)^2
For n > 1, A109306(n) == 0 (mod 5) => 2*A109306(n)^2 == 0 (mod 50).
EXAMPLE
50 = 2*5^2 is in the sequence because 50^2 + 1 = 41*61 with 50 = (41 + 61)/2 - 1.
MAPLE
with(numtheory):nn:=250:printf(`%d, `, 8):
for k from 0 to nn do:
n:=50*k^2:d:=factorset(n^2+1):
if bigomega(n^2+1)=2 and (d[1]+d[2])/2 - 1 = n
then
printf(`%d, `, n):
else
fi:
od:
MATHEMATICA
q[n_] := Module[{f = FactorInteger[n^2 + 1]}, f[[;; , 2]] == {1, 1} && f[[1, 1]] + f[[2, 1]] == 2*n + 2]; Select[Range[3*10^5], q] (* Amiram Eldar, Jan 26 2022 *)
PROG
(PARI) isok(m) = my(x); if (bigomega(x=m^2+1)==2, my(f=factor(x)); (f[1, 1]+f[2, 1] == 2*(m+1))); \\ Michel Marcus, Jan 26 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 26 2022
STATUS
approved