login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348590
Number of endofunctions on [n] with exactly one isolated fixed point.
2
0, 1, 0, 9, 68, 845, 12474, 218827, 4435864, 102030777, 2625176150, 74701061831, 2329237613988, 78972674630005, 2892636060014050, 113828236497224355, 4789121681108775344, 214528601554419809777, 10193616586275094959534, 512100888749268955942015
OFFSET
0,4
LINKS
FORMULA
a(n) mod 2 = A000035(n).
EXAMPLE
a(3) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
MAPLE
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, t) option remember; `if`(n=0, t, add(g(i)*
b(n-i, `if`(i=1, 1, t))*binomial(n-1, i-1), i=1+t..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23);
MATHEMATICA
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}] ;
b[n_, t_] := b[n, t] = If[n == 0, t, Sum[g[i]*
b[n - i, If[i == 1, 1, t]]*Binomial[n - 1, i - 1], {i, 1 + t, n}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A350212.
Sequence in context: A091708 A327560 A024119 * A120306 A197425 A089379
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 20 2021
STATUS
approved