login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of endofunctions on [n] with exactly one isolated fixed point.
2

%I #26 May 16 2022 10:00:05

%S 0,1,0,9,68,845,12474,218827,4435864,102030777,2625176150,74701061831,

%T 2329237613988,78972674630005,2892636060014050,113828236497224355,

%U 4789121681108775344,214528601554419809777,10193616586275094959534,512100888749268955942015

%N Number of endofunctions on [n] with exactly one isolated fixed point.

%H Alois P. Heinz, <a href="/A348590/b348590.txt">Table of n, a(n) for n = 0..386</a>

%F a(n) mod 2 = A000035(n).

%e a(3) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.

%p g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:

%p b:= proc(n, t) option remember; `if`(n=0, t, add(g(i)*

%p b(n-i, `if`(i=1, 1, t))*binomial(n-1, i-1), i=1+t..n))

%p end:

%p a:= n-> b(n, 0):

%p seq(a(n), n=0..23);

%t g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}] ;

%t b[n_, t_] := b[n, t] = If[n == 0, t, Sum[g[i]*

%t b[n - i, If[i == 1, 1, t]]*Binomial[n - 1, i - 1], {i, 1 + t, n}]];

%t a[n_] := b[n, 0];

%t Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, May 16 2022, after _Alois P. Heinz_ *)

%Y Column k=1 of A350212.

%Y Cf. A000035, A000240, A001865, A250105.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Dec 20 2021