|
|
A164346
|
|
a(n) = 3 * 4^n.
|
|
13
|
|
|
3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Binomial transform of A000244 without initial 1.
Second binomial transform of A007283.
Third binomial transform of A010701.
Inverse binomial transform of A005053 without initial 1.
First differences of A024036. - Omar E. Pol, Feb 16 2013
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..500
|
|
FORMULA
|
a(n) = 4*a(n-1) for n > 1; a(0) = 3.
G.f.: 3/(1-4*x).
a(n) = A002001(n+1). a(n) = A096045(n)+2. a(n) = A140660(n)-1.
a(n) = A002023(n)/2. a(n) = A002063(n)/3. a(n) = A056120(n+3)/9.
Apparently a(n) = A084509(n+3)/2.
a(n) = A110594(n+1), n>1. - R. J. Mathar, Aug 17 2009
a(n) = 3*A000302(n). - Omar E. Pol, Feb 18 2013
a(n) = A000079(2*n) + A000079(2*n+1). - M. F. Hasler, Jul 28 2015
E.g.f.: 3*exp(4*x). - G. C. Greubel, Sep 15 2017
|
|
MATHEMATICA
|
3 4^Range[0, 30] (* Harvey P. Dale, Mar 11 2011 *)
|
|
PROG
|
(MAGMA) [ 3*4^n: n in [0..22] ];
(PARI) A164346(n)=3*4^n \\ M. F. Hasler, Jul 28 2015
|
|
CROSSREFS
|
Cf. A000302 (powers of 4), A000244 (powers of 3), A007283 (3*2^n), A010701 (all 3's), A005053, A002001, A096045, A140660 (3*4^n+1), A002023 (6*4^n), A002063(9*4^n), A056120, A084509.
Sequence in context: A259865 A254942 A077828 * A002001 A113956 A323261
Adjacent sequences: A164343 A164344 A164345 * A164347 A164348 A164349
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Klaus Brockhaus, Aug 13 2009
|
|
STATUS
|
approved
|
|
|
|