login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370344
Expansion of g.f. A(x) satisfying Sum_{n>=0} Product_{k=1..n} (x^(2*k-1) + A(x)) = Product_{k>=1} (1 - x^(2*k)) * (1 + x^k + A(x))^2 / (1 + x^(2*k) + A(x))^2.
4
1, -4, 18, -95, 553, -3456, 22657, -153716, 1070043, -7599246, 54840210, -400989178, 2964353647, -22119041245, 166368440982, -1260046720460, 9601545345559, -73557555227321, 566224579674519, -4377328989747178, 33970709342730943, -264555621945673287, 2066853486071102281
OFFSET
1,2
COMMENTS
Compare to identity: 1 + 2*Sum_{n>=0} x^(n^2) = Product_{n>=1} (1 - x^(2*n)) * (1 + x^n)^2 / (1 + x^(2*n))^2.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) B(x) = Product_{k>=1} (1 - x^(2*k)) * (1 + x^k + A(x))^2 / (1 + x^(2*k) + A(x))^2.
(2) B(x) = Sum_{n>=0} Product_{k=1..n} (x^(2*k-1) + A(x)).
(3) B(x) = Sum_{n>=0} x^(n^2) / Product_{k=0..n} (1 - x^(2*k)*A(x)).
(4) B(x) = (x + A(x))/(1 + F(1)), where F(n) = -(x^(2*n+1) + A(x))/(1 + (x^(2*n+1) + A(x)) + F(n+1)), a continued fraction.
EXAMPLE
G.f.: A(x) = x - 4*x^2 + 18*x^3 - 95*x^4 + 553*x^5 - 3456*x^6 + 22657*x^7 - 153716*x^8 + 1070043*x^9 - 7599246*x^10 + 54840210*x^11 - 400989178*x^12 + ...
By definition, A = A(x) allows for the following expressions to equal
B(x) = 1 + (x + A) + (x + A)*(x^3 + A) + (x + A)*(x^3 + A)*(x^5 + A) + (x + A)*(x^3 + A)*(x^5 + A)*(x^7 + A) + (x + A)*(x^3 + A)*(x^5 + A)*(x^7 + A)*(x^9 + A) + ...
B(x) = (1 - x^2)*(1 + x + A)^2/(1 + x^2 + A)^2 * (1 - x^4)*(1 + x^2 + A)^2/(1 + x^4 + A)^2 * (1 - x^6)*(1 + x^3 + A)^2/(1 + x^6 + A)^2 * (1 - x^8)*(1 + x^4 + A)^2/(1 + x^8 + A)^2 * ...
where B(x) begins
B(x) = 1 + 2*x - 2*x^2 + 8*x^3 - 41*x^4 + 250*x^5 - 1584*x^6 + 10464*x^7 - 71330*x^8 + 498144*x^9 - 3546004*x^10 + 25635440*x^11 - 187708130*x^12 + ...
PROG
(PARI) {a(n) = my(A=[0, 1]); for(i=1, n, A=concat(A, 0);
A[#A] = -polcoeff( sum(m=0, #A, prod(k=1, m, x^(2*k-1) + Ser(A)) ) - prod(m=1, #A, (1 - x^(2*m))*(1 + x^m + Ser(A))^2/(1 + x^(2*m) + Ser(A))^2 ), #A-1)); H=A; A[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 16 2024
STATUS
approved