login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

G.f. 1/(1-z*R(z*m(z))) where R(z) = (1-z-(z+1)*sqrt(1-4*z))/(2*z^2), m(z) = (3-z-sqrt(1-6*z+z^2))/2.
0

%I #10 Feb 17 2018 21:12:45

%S 1,2,7,30,140,684,3440,17652,91936,484356,2575280,13795668,74367408,

%T 403026372,2194186272,11993494356,65787201984,361983246084,

%U 1997299980368,11048026950228,61250480822416,340274092662084,1893939042807872,10559753415822420,58970301517748000

%N G.f. 1/(1-z*R(z*m(z))) where R(z) = (1-z-(z+1)*sqrt(1-4*z))/(2*z^2), m(z) = (3-z-sqrt(1-6*z+z^2))/2.

%H Michael Anshelevich, <a href="https://arxiv.org/abs/1708.08034">Product formulas on posets, Wick products, and a correction for the q-Poisson process</a>, arXiv:1708.08034 [math.OA], 2017.

%p R:=z->(1-z-(z+1)*sqrt(1-4*z))/(2*z^2);

%p m:=z->(3-z-sqrt(1-6*z+z^2))/2;

%p M:=z->1/(1-z*R(z*m(z)));

%p series(M(z),z,40);

%p seriestolist(%);

%t R[z_] := (1 - z - (z + 1) Sqrt[1 - 4 z])/(2 z^2); m[z_] := (3 - z - Sqrt[1 - 6 z + z^2])/2; CoefficientList[Series[1/(1 - z R[z m[z]]), {z, 0, 24}], z] (* _Michael De Vlieger_, Feb 17 2018 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Feb 17 2018