login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109056
To compute a(n) we first write down 4^n 1's in a row. Each row takes the rightmost 4th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 4th part. The single element in the last row is a(n).
8
1, 1, 4, 58, 3236, 713727, 627642640, 2205897096672, 31004442653082720, 1743005531132374350208, 391947224244531572312436328, 352545281714327012273215572739472, 1268416358395092955994185170741834144224, 18254446075150458724007419019753847268167282688
OFFSET
0,3
LINKS
EXAMPLE
For example, for n=3 the array looks like this:
1..1.....1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1
............1..2..3..4..5..6..7..8..9.10.11.12.13.14.15.16
...............................................13.27.42.58
........................................................58
Therefore a(4)=58.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=3*nops(L)/4+1..j), j=3*nops(L)/4+1..nops(L))]; a:=f([seq(1, j=1..4^n)]); while nops(a)>4 do a:=f(a) end do; a[4]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 4];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A355576 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Jun 17 2005
EXTENSIONS
More terms from Alois P. Heinz, Jul 06 2022
STATUS
approved