The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109055 To compute a(n) we first write down 3^n 1's in a row. Each row takes the rightmost 3rd part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 3rd part. The single element in the last row is a(n). 6
 1, 1, 3, 24, 541, 35649, 6979689, 4085743032, 7166723910237, 37698139930450365, 594816080266215640710, 28154472624850002001979592, 3997853576535778666975681355079, 1703042427700923785323670557504832751 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Comment from Franklin T. Adams-Watters, Jul 13 2006: This is the number of subpartitions of the sequence 3^n-1. As such it can also be computed adding forward, with 3^n terms in the n-th line: 1........................................................................... 1.1 1....................................................................... 1.2.3.3..3..3..3..3..3...................................................... 1.3.6.9.12.15.18.21.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24 LINKS EXAMPLE For example, for n=3 the array looks like this: 1..1..1..1..1........1..1..1..1..1..1..1..1..1..1 ........................1..2..3..4..5..6..7..8..9 ..........................................7.15.24 ...............................................24 Therefore a(3)=24. MAPLE proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=2*nops(L)/3+1..j), j=2*nops(L)/3+1..nops(L))]; a:=f([seq(1, j=1..3^n)]); while nops(a)>3 do a:=f(a) end do; a[3]; end proc; CROSSREFS Cf. A107354, A109056, A109057, A109058, A109059, A109060, A109061, A109062. Cf. A115728, A115729. Sequence in context: A194157 A166736 A330297 * A318766 A292813 A293249 Adjacent sequences:  A109052 A109053 A109054 * A109056 A109057 A109058 KEYWORD nonn AUTHOR Augustine O. Munagi, Jun 17 2005 EXTENSIONS More terms from Paul D. Hanna (pauldhannaATjuno.com) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 03:46 EDT 2020. Contains 337346 sequences. (Running on oeis4.)