login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109059
To compute a(n) we first write down 7^n 1's in a row. Each row takes the rightmost 7th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 7th part. The single element in the last row is a(n).
8
1, 1, 7, 322, 102249, 226742516, 3518406903403, 382149784071841422, 290546585470549214822793, 1546306129153609960601346281449, 57606719909341067627899562630623352149, 15022729501707009545842655841005666468590455864, 27423481304702360472157221630747597794702587610760693525
OFFSET
0,3
LINKS
EXAMPLE
For example, for n=3 the array, from 2nd row, follows:
1..2..3.....38..39..40..41..42..43..44..45..46..47..48..49
................................43..87.132.178.225.273.322
.......................................................322
Therefore a(3)=322.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=6*nops(L)/7+1..j), j=6*nops(L)/7+1..nops(L))]; a:=f([seq(1, j=1..7^n)]); while nops(a)>7 do a:=f(a) end do; a[7]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 7];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after_Alois P. Heinz_ in A355576 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Jun 17 2005
EXTENSIONS
More terms from Alois P. Heinz, Jul 06 2022
STATUS
approved