|
|
A155204
|
|
G.f.: A(x) = exp( Sum_{n>=1} (3^n + 1)^n * x^n/n ), a power series in x with integer coefficients.
|
|
7
|
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
|
|
LINKS
|
|
|
FORMULA
|
Equals row sums of triangle A155812.
|
|
EXAMPLE
|
G.f.: A(x) = 1 + 4*x + 58*x^2 + 7528*x^3 + 11333974*x^4 + 173018964568*x^5 +...
log(A(x)) = 4*x + 10^2*x^2/2 + 28*x^3/3 + 82^4*x^4/4 + 244^5*x^5/5 +...
|
|
PROG
|
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, (3^m+1)^m*x^m/m)+x*O(x^n)), n)}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|